An anatomical and functional topography of human auditory cortical areas

نویسندگان

  • Michelle Moerel
  • Federico De Martino
  • Elia Formisano
چکیده

While advances in magnetic resonance imaging (MRI) throughout the last decades have enabled the detailed anatomical and functional inspection of the human brain non-invasively, to date there is no consensus regarding the precise subdivision and topography of the areas forming the human auditory cortex. Here, we propose a topography of the human auditory areas based on insights on the anatomical and functional properties of human auditory areas as revealed by studies of cyto- and myelo-architecture and fMRI investigations at ultra-high magnetic field (7 Tesla). Importantly, we illustrate that-whereas a group-based approach to analyze functional (tonotopic) maps is appropriate to highlight the main tonotopic axis-the examination of tonotopic maps at single subject level is required to detail the topography of primary and non-primary areas that may be more variable across subjects. Furthermore, we show that considering multiple maps indicative of anatomical (i.e., myelination) as well as of functional properties (e.g., broadness of frequency tuning) is helpful in identifying auditory cortical areas in individual human brains. We propose and discuss a topography of areas that is consistent with old and recent anatomical post-mortem characterizations of the human auditory cortex and that may serve as a working model for neuroscience studies of auditory functions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tonotopic organization in human auditory cortex revealed by progressions of frequency sensitivity.

Functional neuroimaging experiments have revealed an organization of frequency-dependent responses in human auditory cortex suggestive of multiple tonotopically organized areas. Numerous studies have sampled cortical responses to isolated narrow-band stimuli, revealing multiple locations in auditory cortex at which the position of response varies systematically with frequency content. Because a...

متن کامل

Local landmark-based mapping of human auditory cortex.

Mammalian sensory cortex is functionally partitioned into cortical fields that are specialized for different processing operations. In theory, averaging functional and anatomical images across subjects can reveal both the average anatomy and the mean functional organization of sensory regions. However, this averaging process must overcome at least two obstacles: (1) the relative locations and s...

متن کامل

Functional Topography of Human Corpus Callosum: An fMRI Mapping Study

The concept of a topographical map of the corpus callosum (CC) has emerged from human lesion studies and from electrophysiological and anatomical tracing investigations in other mammals. Over the last few years a rising number of researchers have been reporting functional magnetic resonance imaging (fMRI) activation in white matter, particularly the CC. In this study the scope for describing CC...

متن کامل

PrAGMATiC: a Probabilistic and Generative Model of Areas Tiling the Cortex

Much of the human cortex seems to be organized into topographic cortical maps. Yet few quantitative methods exist for characterizing these maps. To address this issue we developed a modeling framework that can reveal group-level cortical maps based on neuroimaging data. PrAGMATiC, a probabilistic and generative model of areas tiling the cortex, is a hierarchical Bayesian generative model of cor...

متن کامل

Extensive Tonotopic Mapping across Auditory Cortex Is Recapitulated by Spectrally Directed Attention and Systematically Related to Cortical Myeloarchitecture

Auditory selective attention is vital in natural soundscapes. But it is unclear how attentional focus on the primary dimension of auditory representation-acoustic frequency-might modulate basic auditory functional topography during active listening. In contrast to visual selective attention, which is supported by motor-mediated optimization of input across saccades and pupil dilation, the prima...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2014